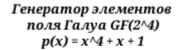
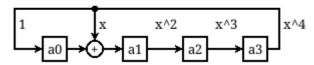

Пример схемы генератора поля Галуа GF(2^3) $p(x) = x^3 + x^2 + 1$

Полиномиальное представление элементов поля:

$$a_0 + a_1 x + a_2 x^2$$

Векторное представление элементов поля:


$$[a_0 a_1 a_2]$$


Построение поля Галуа по схеме генератора поля:

Начальное значение должно соответствовать элементу $\epsilon^0=1$

Такт	a0	a1	a2	Степенная форма
1	1	0	0	$arepsilon^0$
2	0	1	0	ϵ^1
3	0	0	1	ε^2
4	1	0	1	$\mathbf{\varepsilon}^3$
5	1	1	1	ϵ^4
6	1	1	0	$oldsymbol{arepsilon}^5$
7	0	1	1	ϵ^6

Пример схемы генератора поля Галуа $GF(2^4)$ $p(x) = x^4 + x + 1$

Полиномиальное представление элементов поля:

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

Векторное представление элементов поля:

$$[a_0 \ a_1 \ a_2 \ a_3]$$

Построение поля Галуа по схеме генератора поля:

Начальное значение должно соответствовать элементу $\epsilon^0=1$

Такт	a0	a1	a2	a3	Степенная форма
1	1	0	0	0	ϵ^0
2	0	1	0	0	ϵ^1
3	0	0	1	0	ϵ^2
4	0	0	0	1	ϵ^3
5	1	1	0	0	ϵ^4
6	0	1	1	0	ϵ^5
7	0	0	1	1	ϵ^6
8	1	1	0	1	ϵ^7
9	1	0	1	0	ϵ^8
10	0	1	0	1	ϵ^9
11	1	1	1	0	ϵ^{10}
12	0	1	1	1	ε ¹¹
13	1	1	1	1	ε ¹²
14	1	0	1	1	ε ¹³
15	1	0	0	1	ϵ^{14}