Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича

«СИСТЕМЫ ДОКУМЕНТАЛЬНОЙ ЭЛЕКТРОСВЯЗИ»

4-й курс,8-й семестр

Материалы к лекциям

Часть 2

Лектор – проф. Когновицкий О. С.

2011/2012-й учебный год

Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича

«СИСТЕМЫ ДОКУМЕНТАЛЬНОЙ ЭЛЕКТРОСВЯЗИ»

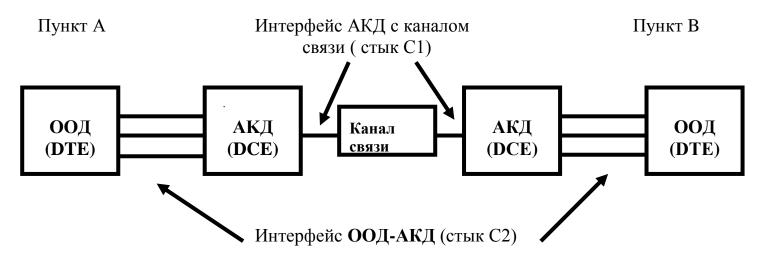
4-й курс, 8-й семестр

Материалы к лекциям

Часть 2

Лектор – проф. Когновицкий О. С.

Лекционных занятий — 48 часов Лабораторных занятий — 14 часов Практических занятий — 14 часов Формы контроля знаний студентов:


- Зачет по лабораторным работам;
- Зачет (с оценкой) по курсовому проектированию;
- Экзамен по курсу.

Лаб. занятия проводят — асс Владимиров С.С., ст. пр. Новодворский М.С., Упражнения (курс .пр.) проводят - доц. Дементьев А. И., ст.пр. Новодворский М.С.

2011/2012-й учебный год

4. Модемы

Рис. 4.1. Блок-схема системы передачи данных.

КЛАССИФИКАЦИЯ МОДЕМОВ

1.По области применения:

- для коммутируемых телефонных каналов;
- для выделенных телефонных каналов;
- для физических линий;
- для цифровых систем передачи;
- для пакетных радиосетей;
- для сотовых систем связи.

2.По методу передачи:

- синхронные модемы;
- асинхронные модемы;
- асинхронно-синхронные модемы.

3.По интеллектуальным возможностям:

- без системы управления;
- поддерживающие набор АТ-команд;
- с поддержкой протокола V.25bis;
- с фирменной системой команд.

4.По конструкции:

- внешние;
- внутренние;
- портативные;
- групповые.

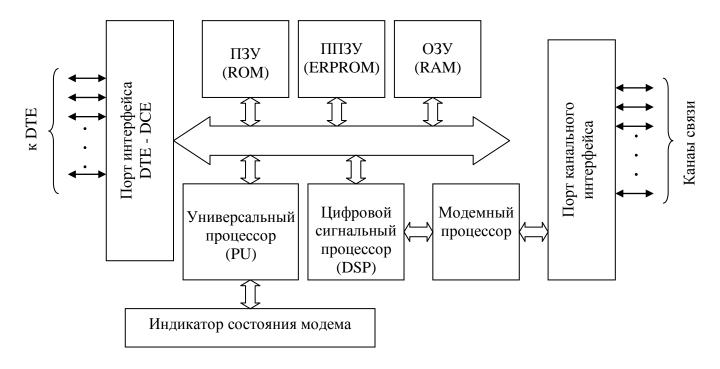


Рис.4.2. Устройство современного модема

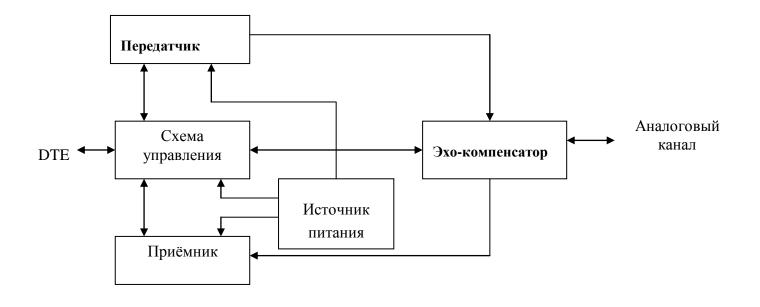


Рис.4.3. Схема синхронного модема

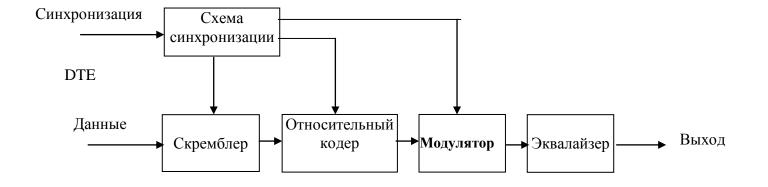


Рис. 4.4. Схема передатчика синхронного модема

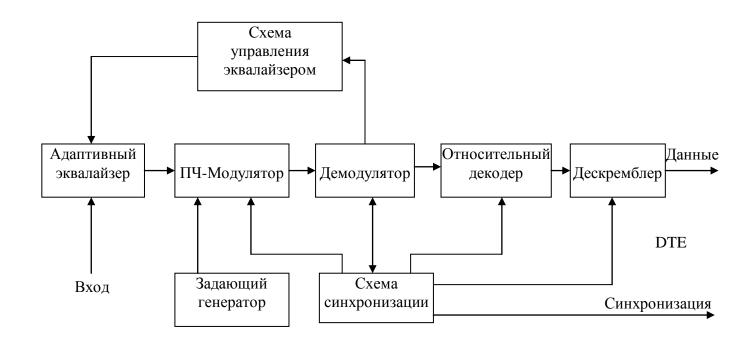


Рис. 4.5. Схема приёмника синхронного модема

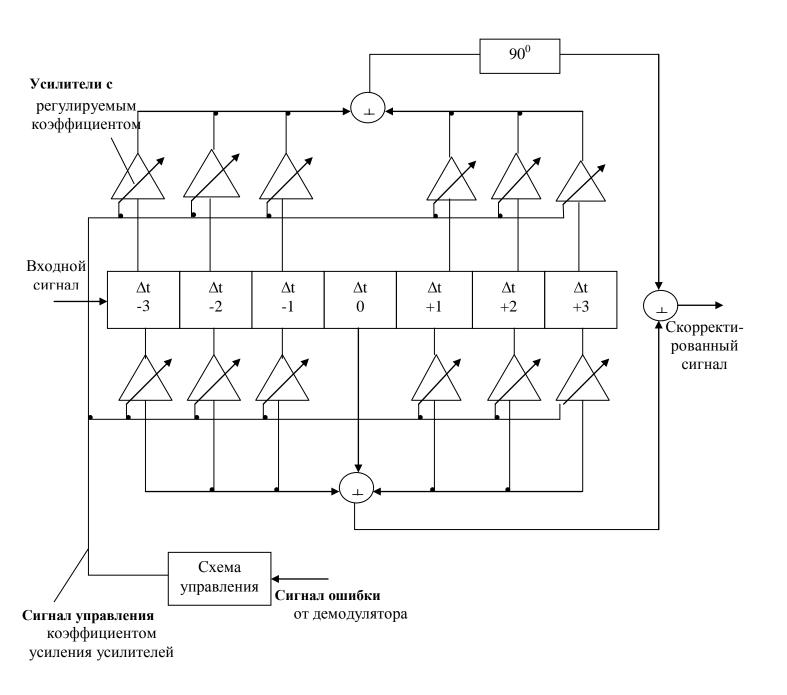


Рис.4.6.Адаптивный эквалайзер

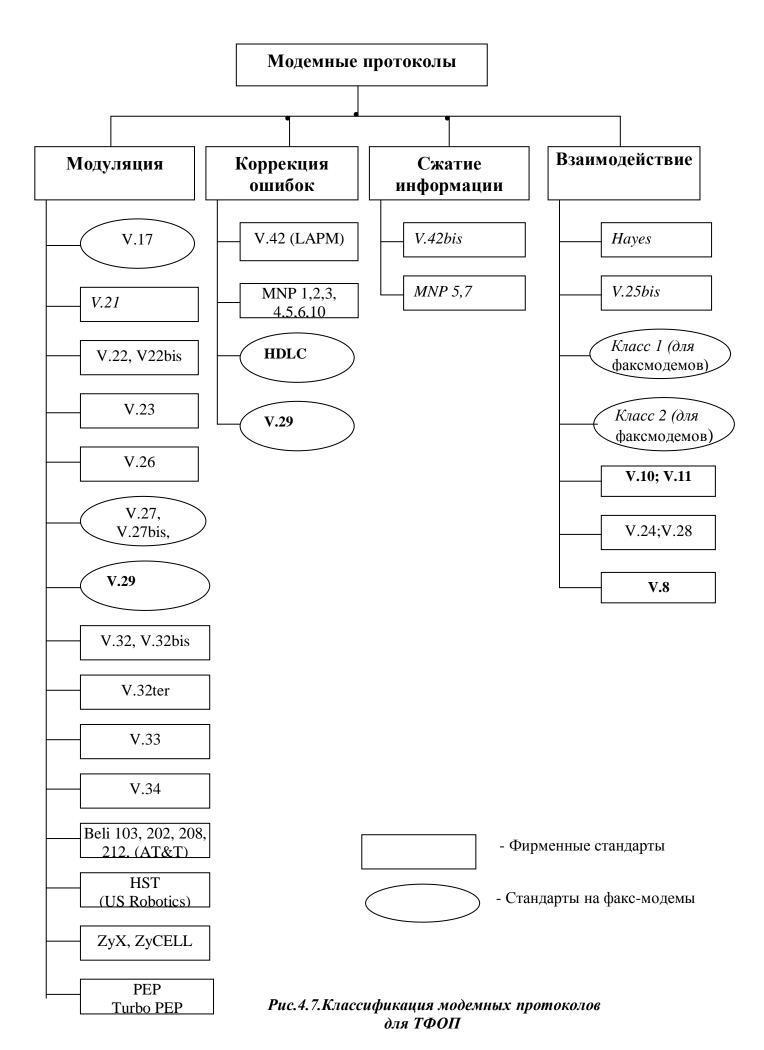
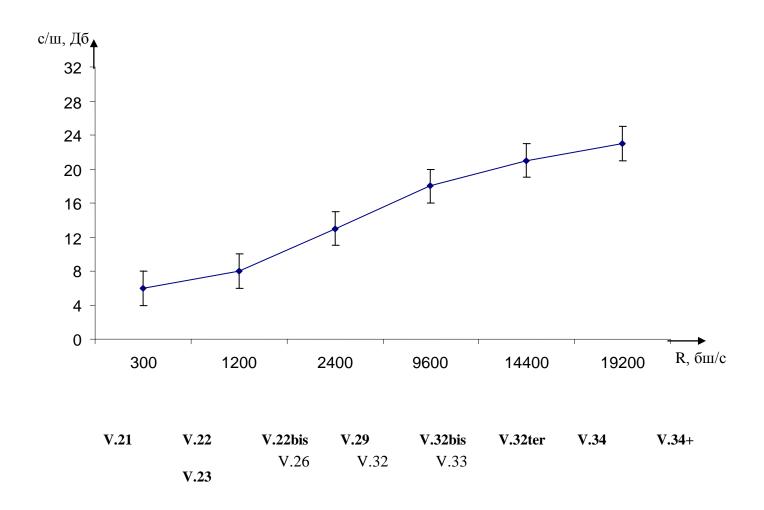



Рис. 4.8. Область необходимого отношения *сигнал/шум* в зависимости от скорости передачи и требуемой достоверности (P_0 = 10^{-4} по битам).

C =
$$\Delta$$
F log ₂ (1+S/N), Δ F = 3100 Γ _H

1)
$$c/ш = 20 \text{ дБ} = 10 \log S/N = 10 \log 100 \rightarrow S/N = 100$$
, $C = 20640 \text{ бит/с}$;

2)
$$c/m = 30 \text{ дБ}$$
; $S/N = 1000$; $C = 3100 \log_2 1001 = 29760 \text{ бит/с}$

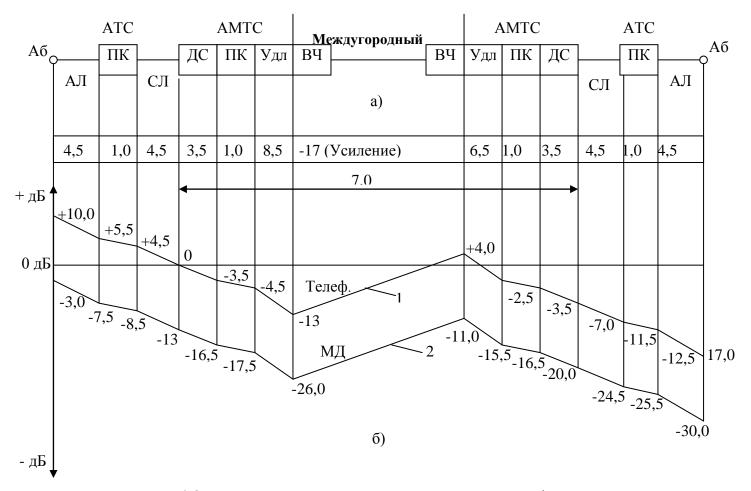
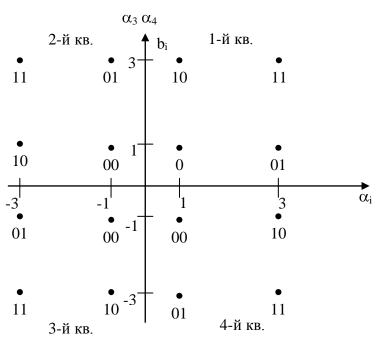
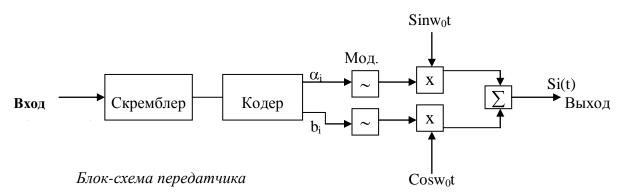


Рис. 4.9. Распределение уровней сигналов по телефонному тракту

Современные модемные технологии.

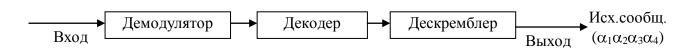

1. V.22bis

KAM-16


Сигнальные точки: $(\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4)$ – квадбит

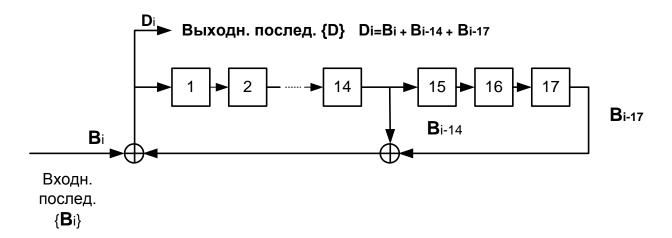
B = 2400 бит/с. ($B_{\text{лин}} = 600$ Бод)

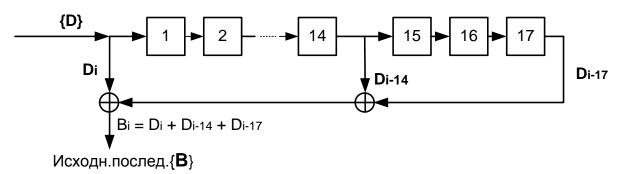
$\alpha_1 \alpha_2$	Δφ	Переход
00	900	$ \begin{array}{c} 1 \to 2 \\ 2 \to 3 \\ 3 \to 4 \\ 4 \to 1 \end{array} $
01	0_0	$ \begin{array}{c} 1 \to 1 \\ 2 \to 2 \\ 3 \to 3 \\ 4 \to 4 \end{array} $
11	270 ⁰	$ \begin{array}{c c} 1 \to \bigcirc 4 \\ 2 \to \bigcirc 1 \\ 3 \to \bigcirc 2 \\ 4 \to \bigcirc 3 \end{array} $
10	180°	$ \begin{array}{c} 1 \to 3 \\ 2 \to 4 \\ 3 \to 1 \\ 4 \to 2 \end{array} $


$$(\alpha_1\alpha_2\alpha_3\alpha_4) = (00\ 01)$$

$$U_i = \sqrt{\alpha_i^2 + b_i^2}$$

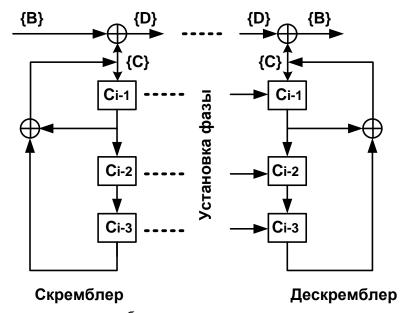
$$tg\phi = b_i/\alpha_i$$
;


 $S_i(t) = \alpha_i Sinw_0 t + b_i Cosw_0 t = U_i Sin(w_0 t + \phi);$


Блок-схема приёмника

а).Скремблирование с самофазированием

<u>Скремблер</u>: $P(x) = 1 + x^{-14} + x^{-17}$



<u>Дескремблер:</u>

Недостаток – размножение ошибок

б).Пример скремблирования с принудительной установкой фазы

Отсутствует размножение ошибок

Принципы построения сверточных кодов.

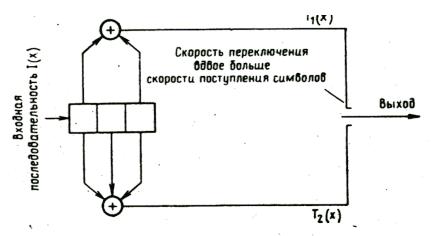


Рис. 6.1. Кодер для сверточного кода со скоростью 1/2 и с кодовым ограничением 3

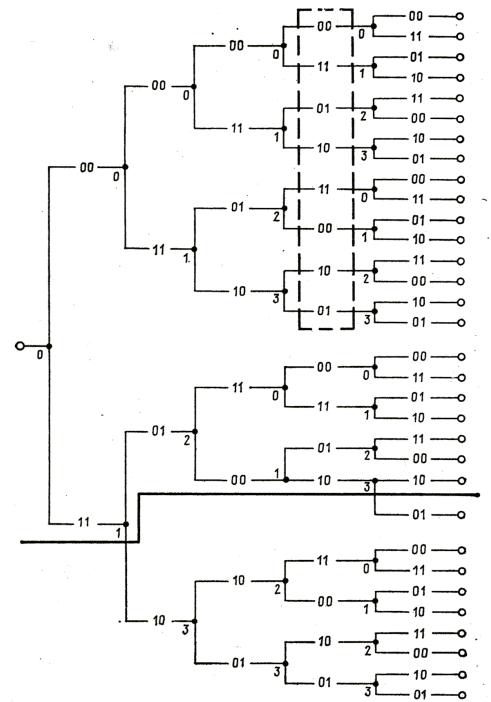


Рис. 6.2. Дерево для сверточного кода с кодовым ограничением 3. В каждой паре верхняя ветвь соответствует входному символу 0, нижняя 1

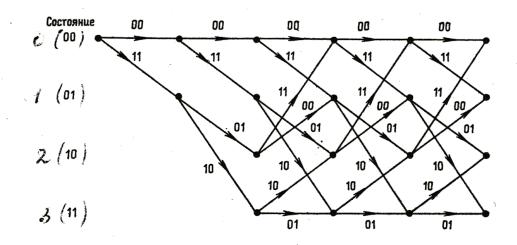


Рис. 6.3. Решетка для сверточного кода с кодовым ограничением 3

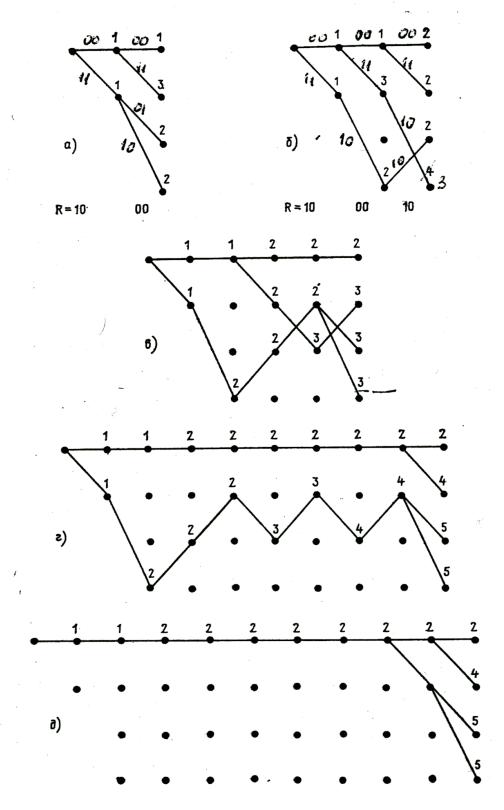
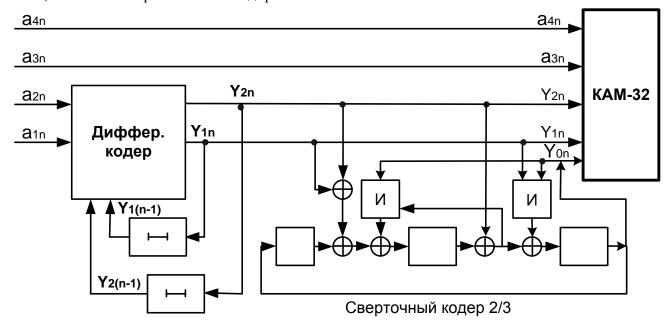


Рис. 6.4. Иллюстрация примера декодирования исправляемой комбинации ошибок с помощью алгоритма Витерби

2. <u>V.32</u>

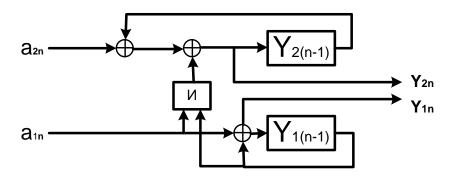

- **ф** дуплексная передача по 2-х проводным телеф. линиям;
- **❖** эхо-компенсация;
- ***** скорости: B = 2400, 4800, 9600 бит/с;
- **♦** модуляция: КАМ-16, КАМ-32, fнес = 1800±7;
- скремблирование с самофазированием.
- 1) **КАМ-16** (безизбыточное кодирование), B = 9600 бит/с ($B_{\pi} = 2400$ Бод)

 $(a_1 a_2 a_3 a_4)$

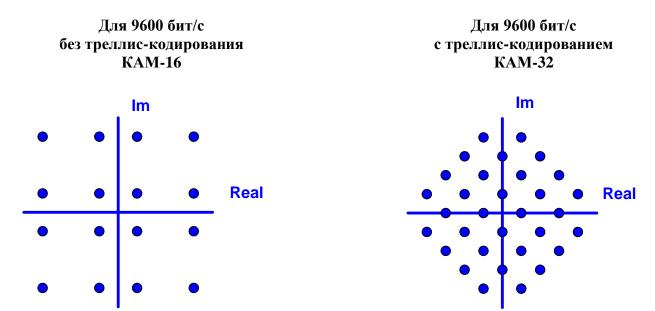
 $a_1 a_2$ – квадрант

а₃ **а**₄ - сигн. точка

2) КАМ-32 с решетчатым кодированием


Вход: $(a_1a_2a_3a_4) \rightarrow$ на выходе кодера $(Y_0 \ Y_1Y_2 \ a_3 \ a_4) - \underline{CKP}$ Скорость остается равной B = 9600 бит/с.

KAM-32.


Скорость модуляции = 2400 Бод.

Пропускная способность канала: 2400*5=12000 бит/с.

Дифференциальный кодер

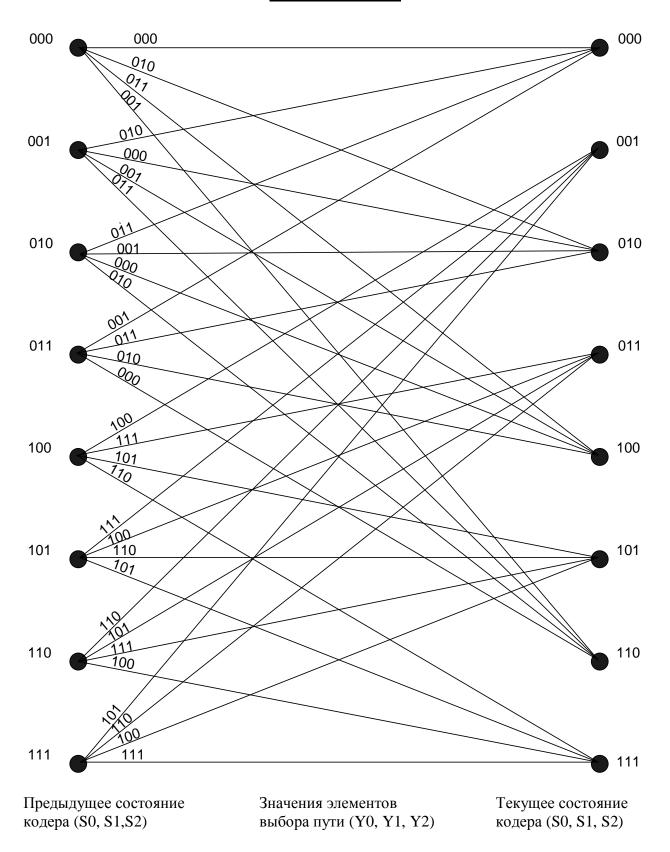


Диаграмма V.32

КАМ-32. Значения позиций

Решетка V.32

3. V.32 bis

СКК:

- Дуплексный по 2-х проводным линиям (ком./неком.);
- Эхокомпенсация;
- Скорости: B = 14400, 12000, 9600, 7200 с треллискодир-нием

КАМ-128 КАМ-64 КАМ-32 КАМ-16 (6+1пэ) (5+1) (4+1) (3+1)

Вход	$(a_1a_2a_3a_4a_5a_6)$	$(a_1a_2a_3a_4a_5)$	$(a_1a_2a_3a_4)$	$(a_1a_2a_3)$
кодера				
Выход	$(Y_0Y_1Y_2a_3a_4a_5a_6)$	$(Y_0Y_1Y_2a_3a_4a_5)$	$(Y_0Y_1Y_2a_3a_4)$	$(Y_0Y_1Y_2a_3)$
Скорость	14400 бит/с	12000 бит/с	9600 бит/с	7200 бит/с
	(16800)	(14400)	(12000)	(9600)

- Скорость: 4800 бит/с без треллис-кодирования
- Линейная скорость 2400 Бод
- $f_H = 1800 \pm 7\Gamma_{IJ}$
- Совместимость с модемом V.32 на скоростяхъ 9600 и 4800 бит/с;
- Процедура смены скорости передачи во время сеанса связи без разрыва соединения;
- Симметричный режим передачи, т.е. скорости передачи и приема каждого взаимодействующего модема должны быть одинаковыми;
- Спектр сигнала ограничен полосой частот от 600Гц до 3000Гц;
- Самофазирующееся скремблирование

Вызывающий модем: $P(x) = 1 + x^{-18} + x^{-23}$ Вызываемый модем: $P(x) = 1 + x^{-5} + x^{-23}$

4. <u>V.33</u>

- Дуплексный, по 4-х проводной выделенной тлф. Линии
- Треллис-модуляция: KAM-64, KAM-128 B=12000 бит/с B=14400 бит/с (5+1) (6+1)
- Линейная скорость: 2400 Бод
- Самофазируемое скремблирование $P(x) = 1 + x^{-18} + x^{-23}$

5. <u>V.34</u> (МСЭ-Т, сентябрь 1994 г.)

Скорость R≤28800 бит/с по телефон. линиям

- Модуляция: многопозиционная КАМ с решетчатым кодированием на 16, 32 и 64 состояния;
- Параметры СКК: *амплитуда, фаза, время*. четырехмерное пространство; одна сигнальная точка может переносить от одного до девяти бит; максимальное среднее значение 8,4 бита на одну

- сигнальную точку; предусмотрено 50 различных сигнальных конструкций в четырехмерном пространстве;
- Выбор несущей: 1600, 1646, 1680, <u>1800</u>, 1829, 1867, 1920, 1959, 2000 Гц.
- Скорости передачи: от 2400 до 28800 бит/с (с шагом 2400) Адаптация по скорости.
- Линейная скорость: 2400, 2743, 2800,3000, 3200, 3429 (симв./сек.); для канала ТЧ, не позволяющего расширить полосу пропускания, максимально допустимой скоростью передачи сигналов является скорость 3000 симв/сек. При этой символьной скорости возможна скорость передачи данных на скорости 26400 бит/с
- Дуплексная передача асимметричная
- Адаптивная коррекция АЧХ.

6. <u>V.34+</u> (октябрь 1996 г.)

R≤33,6 бит/с.

- 2-х проводные коммутируемые и выделенные линии;
- дуплексные;
- повышение скорости 1 символ может переносить в среднем (максимум) 9,8 бит; тогда $Rmax = Bmax \times 9,8 = 3429 \times 9,8 = 33,6$ Кбит/с.

Характеристики протоколов модуляции модемов для ТФОП

Рекомен-	Скорость	Скорость	Режим	дуплекс/	модуляция	Тип	Тип
дация	модуляции	передачи,	передачи	полудуплекс		линии	окончания
	,	бит/с	•				
	Бод						
V.17 (fax)	2400	14400,1200, 9600, 7200	синхр.	ПДП	CKK 128, 64, 32, 16	КОММ	2 ПР
V.21	300	300	любой	ДПЛ	ЧМ	комм.,	2 ПР
V.21	300	300	люоои	7,1131	1171	выдел.	2 111
V.22	600	1200, 600	любой	ДПЛ	ДОФМ,	комм.,	2 ПР
V .22	000	1200, 000	люоои	ДП31	ОФМ,	выд.	2 111
V.22 bis	600	2400, 1200	любой	ДПЛ	КАМ 16,	комм.	2 ПР
V.22 013	000	2400, 1200	люоои	ДПЛ	KAM 4	KOWIWI.	2 111
V.23	1200, 600	1200, 600	любой	ДПЛ	ЧМ	комм.	2 ПР,
V.23	1200, 000	1200, 000	шооон	71131	1141	KOMM.	4 ΠP
V.26	1200	2400	синхр.	ДПЛ	ДОФМ	выд.	4 ПР
V.26 bis	1200	2400, 1200	синхр.	ПДП	ДОФМ,	комм	2 ПР
V.20 018	1200	2400, 1200	синхр.	11/411	ОФМ,	KOMM	2 111
V.26 ter	1200	2400, 1200	любой	ДПЛ	ДОФМ,	КОММ	2 ПР
V.20 tci	1200	2400, 1200	люоои	7,1131	ОФМ,	KOMINI	2 111
V.27 (fax)	1600	4800	синхр	любой	OTIVI	выд	4 ПР
V.27 (lax)	1200,1600	4800, 2400	синхр	любой	ОФМ8,	выд	2 ПР,
(fax)	1200,1000	4000, 2400	Сипхр	JIIOOOH	ДОФМ	БЫД	4 ΠP
V.27 ter	1200, 1600	4800, 2400	синхр	ПДП	ОФМ8,	КОММ	2 ПР
(fax)	1200, 1000	1000, 2100	СППКР	11,2,11	ДОФМ	KOMM	2 111
V.29 (fax)	2400	9600, 7200, 4800	синхр	любой	KAM 16, 8	выд	
V.32	2400	9600, 4800, 2400	синхр	ДПЛ	CKK 32, 16,	КОММ	2 ПР,
V.32	2400	7000, 4000, 2400	Сипхр	7,1131	KAM 4,	KOMM	4 ΠP
					ОФМ		1111
V.32 bis	2400	14400, 1200, 9600,	синхр	ДПЛ	CKK 128,	комм	2 ПР,
		7200, 4800	Р	<u></u>	64, 32, 16		4 ΠP
V.32 terbo	2400	19200, 16800	синхр	ДПЛ	CKK 256,	комм	2 ПР,
			Р	<u></u>	CKK 512		4 ΠP
V.33	2400	14400, 12000	синхр	ДПЛ	CKK 128,	выд	4 ПР
					64		
V.34	2400,	28800, 26400, 24000,	синхр	ДПЛ	многомер-	комм.,	2 ПР
	2743,	21600, 19200, 16800,	· r		ные СКК	выд.	
	2800,	14400, 12000,				, ,	
	3000,	9600, 7200, 4800,					
	3200, 3429	2400					
V.34 bis		33600	синхр	ДПЛ	многомер-	комм.,	2 ПР
(V.34+)					ные СКК	выд.	
Bell 103j	300	300	любой	ДПЛ	ЧМ	комм	2 ПР
Bell 202		1200	любой	ДПЛ	ЧМ	комм.,	
						выд.	
Bell 208		4800		ДПЛ		комм	
Bell 212a		1200		ДПЛ		комм	2 ПР
HST	2400	300, 450/4800,	синхр	ассим. ДПЛ		комм	2 ПР
		7200, 9600, 1200,	_				
		14400, 16800					
ZyX	2400, 2743	7200, 9600, 12000,	синхр	ДПЛ	CKK 256	комм	2 ПР
		14400, 16800,					
		19200					
PEP	511x26x26	19600	синхр	ДПЛ	511xCKK64	комм	2 ПР

Характеристики модемов для физических линий

	M-2	M-160	M-200	M-115
Максимальная скорость	2048 кбит/с	160 кбит/с	256 кбит/с	115.2
				кбит/с
Монтируемый в стойку	-	+	+	+
Синхронный режим	+	+	+	-
Асинхронный режим	-	+	-	+
Количество проводов	4	2	4	4
Линейный код	AMI, HDB3	биимпульс	AMI	AMI
Максимальная дальность по кабелю 0,4	2 км*	4,2 км	2,9 км	3,2 км
MM	(2048K)	(160K)	(256K)	(115.2K)
Максимальная дальность по кабелю 0,5	2,4 км*	5,6 км	4,2 км	4,6 км
MM	(2048K)	(160K)	(256K)	(115.2K)
Автоматический адаптивный	+	+	-	-
эквалайзер			(ручной)	(ручной)
Гальваническая развязка с линией и	+	+	+	+
сетью				
Напряжение пробоя линейных	>1500 B	>1500 B	>1500 B	>1500 B
трансформаторов				
Интерфейсы				
RS-232 (V.24/V.28)	+	+	+	+
V.35, V.36 (RS-449), RS-530	+	+	+	-
Диагностика V.54/V.52	+	+	+	-
Трансляция дополнительных	-	+	+	+
управляющих сигналов				
Тестирование с передней панели	+	+	+	-
(ВЕК-тестер)				

^{*)} без регенераторов РС-2

7. Мультимедиа-модемы

Назначение: совместная передача данных,. голоса и видео.

Аналоговая передача голоса и данных-ASVD (Analog Simultaneous Voice/Data);

Цифровая передача голоса и данных - DSVD (Digital Simultaneous Voice/Data).

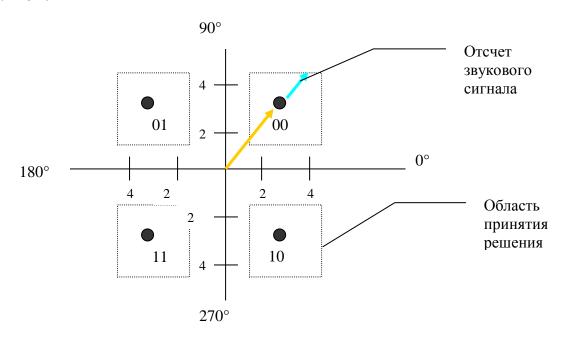
Технология ASVD.

1). Рекомендация МСЭ-Т(1995г.) V.61 - модемы предназначены для передачи одновременно звука и данных со скоростями 4,8 кбит/с или только данных со скоростью до 14.4 кбит/с (аналог V.32bis). Модем способен распознавать паузы речи и осуществлять быстрое переключение на передачу только данных во время пауз речи. Это позволяет увеличить среднюю скорость передачи данных до 9600 бит/с при передаче звука и данных.

Длина кадра в протоколе V.61 принята равной 70 символам, что соответствует длительности от 23,3 до 25 мс в зависимости от скорости манипуляции.

2). Другой протокол V.34Q технологии ASVD обеспечивает одновременную передачу голоса и данных со скоростями, соответствующими протоколу V.34. Т.е., модем V.34Q может работать в режиме звук/данные со скоростями от 2400 до 31200 бит/с, а в режиме -

передача только данных - от 2400 до 33600 бит/с. Сложность реализации V.34Q только на 15% больше, чем для протокола V.34.


Важное свойство V.34Q состоит в возможности выбора скорости передачи данных в зависимости от качества звука. Выбор качества звука в режиме звук/данные может быть произведен при изменении скорости передачи данных от 16800 до 19200 бит/с. Для большинства пользователей качество звука будет вполне приемлемым даже при скорости передачи данных, равной 24000 бит/с, хотя более высокие скорости передачи данных приводят к более низкому качеству звука. В книге О. И. Лагутенко "Современные модемы" отмечается, что даже при скорости передачи данных 31600 бит/с речь остается понятной, в то время как звуковые сигналы фактически теряются в шумах канала.

Протокол V.34Q использует все значения символьной скорости передачи, доступные V.34, вплоть до максимального значения 3429 символов/с.

Рекомендация V.34 определяет структуру кадра данных длительностью 35 или 40 мс в зависимости от символьной скорости. В V.34Q используется такая же структура кадров.

Как и в протоколе V.61, обнаружение пауз звука в V.34Q в комбинации с быстрым переключением режима (скорости) передачи данных может быть использовано для увеличения средней скорости передачи данных.

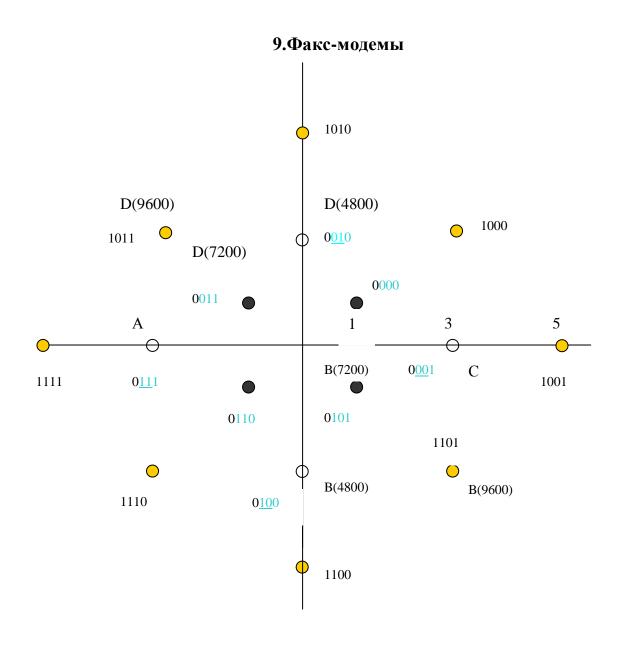
В основе перечисленных стандартов технологии ASVD лежит новый способ модуляции, получивший название квадратурной модуляции аудио и данных (QADM - Quadrature Audio/Data Modulation). QADM является специфичным расширением квадратурно-амплитудной модуляции (QAM). Он предусматривает непосредственную и одновременную дуплексную передачу звука и данных через телефонный канал с двухпроводным окончанием.

Сигнальное созвездие QADM.

Технология DSVD.

По методу DSVD звук оцифровывается, сжимается, мультиплексируется с сигналами данных и передается в едином цифровом потоке.

DSVD-модемы реализуют сжатие голоса до скорости 8,5 кбит/с согласно стандарту на сжатие речи G.729 A/B, а затем объединяют его с данными. При общей скорости 33,6 кбит/с: речь - 8,5 кбит/с, данные - около 24 кбит/с. Аналогично, при общей скорости 28,8 кбит/с: речь - 8,5 кбит/с,а данные - 19,2 кбит/с.В момент обнаружения пауз речи модемы продолжают передачу данных на максимально возможной скорости - 33,6 кбит/с (или 28,8 кбит/с).


Процедуры сжатия и декомпрессии вносят задержку речи, равную 190 мс. Для DSVD-модемов в августе 1996 г был принят стандарт V.70.

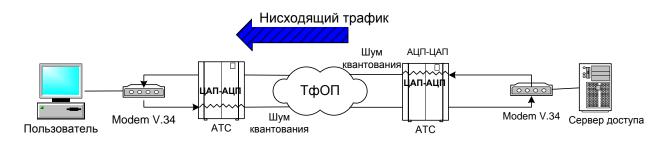
8. Кабельные модемы

В марте 1998 года МСЭ принял Рекомендацию J112, являющаяся фактическим международным стандартом на кабельные модемы. Стандарт J112 определяет методы модуляции и протоколы, которые должны поддерживать кабельные модемы.

При передаче информации от станции КТВ к кабельному модему (прямой канал) сигнал занимает полосу частот 6 МГц в диапазоне от 42 до 750 МГц, скорость передачи данных -до 36 Мбит/с; модуляция КАМ-64 и КАМ-256.

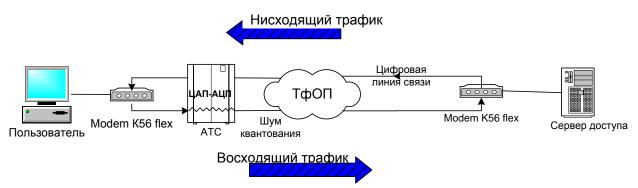
В обратном направлении в сторону станции КТВ (обратный канал) сигналы передаются в диапазоне частот от 5 до 42 МГц со скоростью до 10 Мбит/с; модуляция - КАМ-16 или ФМ-4.

Сигнальное созвездие модема V.29

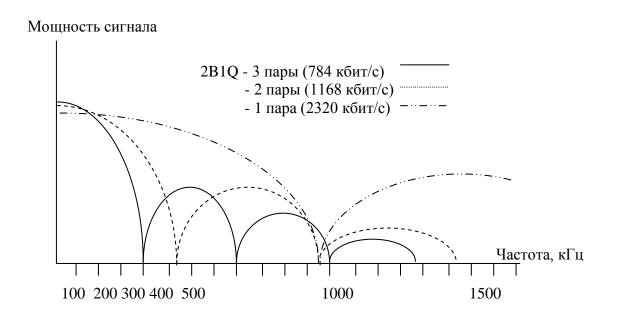

1) Скорость - 9600бит/с; $(a_1a_2a_3a_4)$

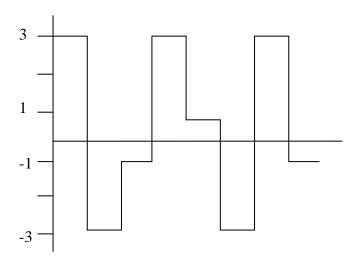
$a_{2}a_{3}a_{4}$	Δφ (градусов)
001	0
000	45
010	90
011	135
111	180
110	225
100	270
101	315

Абсолютная	a_1	Амплитуда
фаза		
0,90,180,270	0	3
	1	5
45,135,225,315	0	$\sqrt{2}$
	1	$3\sqrt{2}$


Пусть фаза сигнала равна 135° . На модем поступила комбинация: $(a_1a_2a_3a_4)=(1011)$. На выходе модема получим сигнал с абсолютной фазой, равной 270° и амплитудой, равной 5.

10. Технология К56 (V.90).


Соединение по протоколу V.34


Tunoвое соединение с провайдером доступа в Internet по протоколу К 56 flex.

10. Технологии линейного кодирования в xDSL.

10.1.Технология 2B1Q.

Спектр сигнала в два раза уже, чем у кода NRZ

10.2. Технология CAP (Carrierless Amplitude and Phase Modulation)

Мощность сигнала

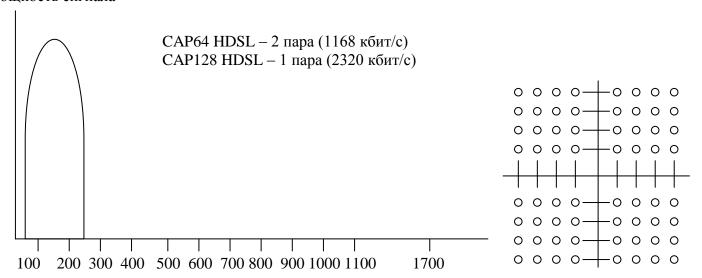


Рис. 10.2 Технология САР

Каждый подканал (тон) имеет QAM – модуляцию И оптимизируется в зависимости от отношения «сигнал/шум»

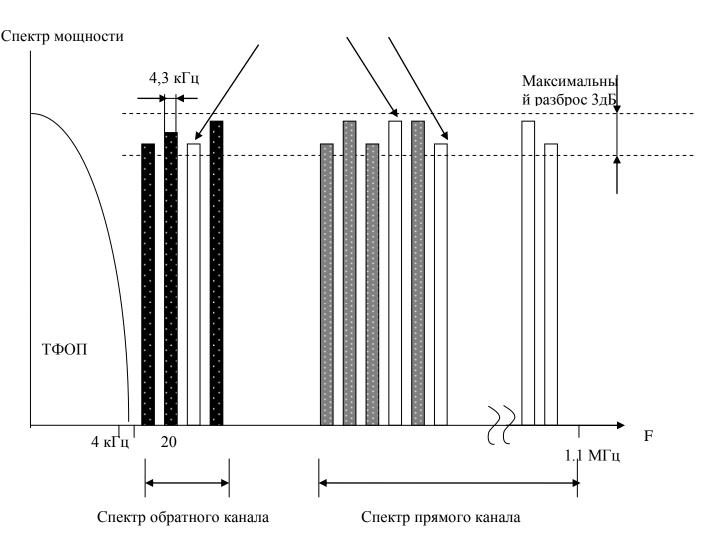


Рис. 10.3. Технология DMT

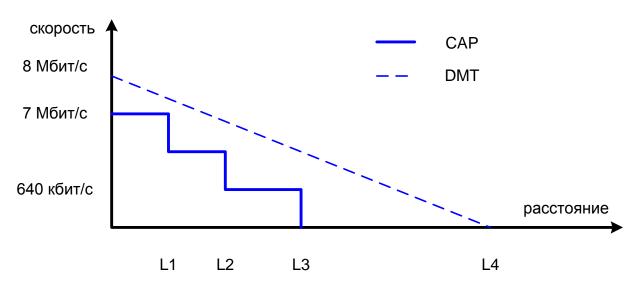
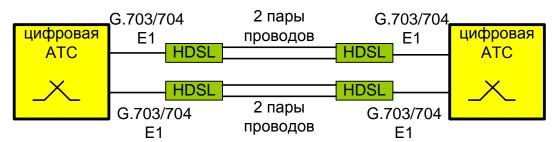
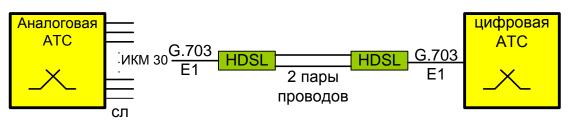
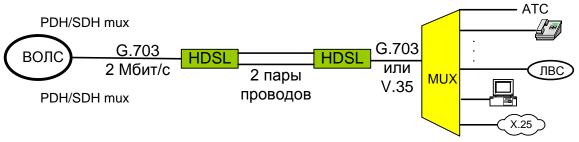
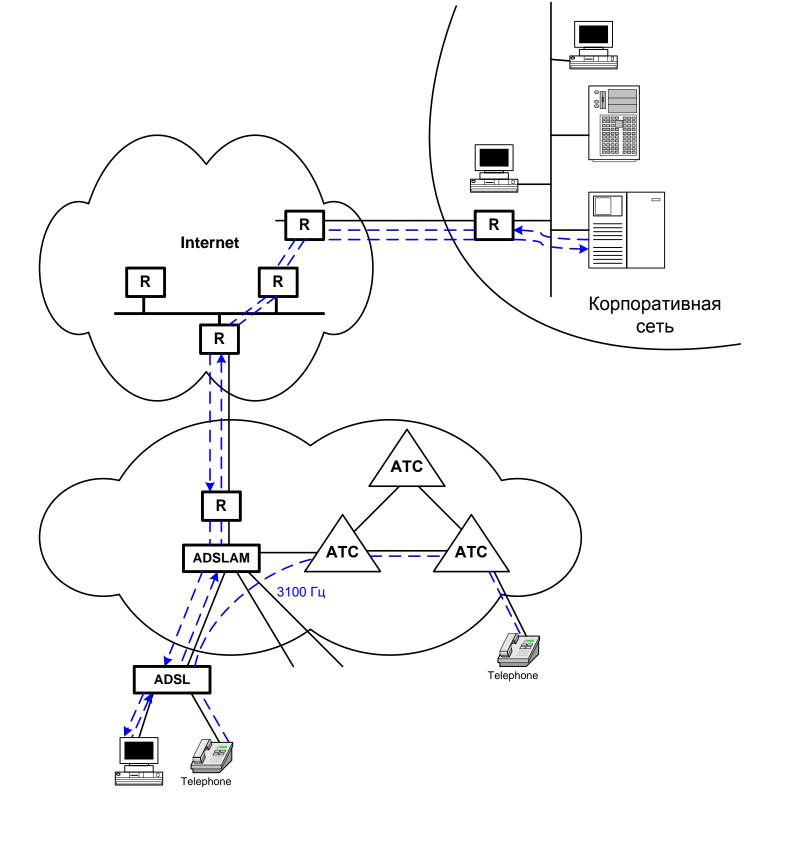





Рис. 10.4. Диапазон доступных скоростей.


Межстанционная связь между цифровыми АТС.

Межстанционная связь между аналоговой и цифровой АТС.

Абонентский вынос.



Доступ к сети SDH.

Объединение локальных вычислительных сетей.

Рис. 10.5. Варианты использования модема HDSL.

Puc18. Отличия условий работы ADSL - модемов от обычных модемов.

HDSL для E1 на двух парах

(Существуют варианты для одной и для трех пар) 18x64 кбит/с (DS0) = 1152 кбит/с на каждой паре

Дополнительные октеты зарезервированы для совместимости с виртуальным контейнером SDH

HOH: накладные расходы HDSL (2 бит)

ST: биты -заполнители (если необходимо)

SYN: символ синхронизации (14 бит)

Bxy: блок полезной нагрузки HDSL F: бит обрамления кадра HDSL

HDSL для E1 на одной паре

(Существуют варианты для трех и для двух пар) 36х64 кбит/с (DS0) = 2304 кбит/с на каждой паре

Дополнительные октеты зарезервированы для совместимости с виртуальным контейнером SDH

HOH: накладные расходы HDSL (2 бит)

ST: биты -заполнители (если необходимо)

SYN: символ синхронизации (14 бит)

Вху: блок полезной нагрузки HDSL F: бит обрамления кадра HDSL

Кадр HDSL для E1

(Существуют варианты для одной и для двух пар)
12x64 кбит/с (DS0) = 768 кбит/с на каждой паре

Дополнительные октеты зарезервированы для совместимости с виртуальным контейнером SDH

HOH: накладные расходы HDSL (2 бит) ST: биты -заполнители (если необходимо)

SYN: символ синхронизации (14 бит)

Bxy: блок полезной нагрузки HDSL F: бит обрамления кадра HDSL

5. Физический уровень.

5.1.Стыки АКД и каналов связи.

Интерфейсы

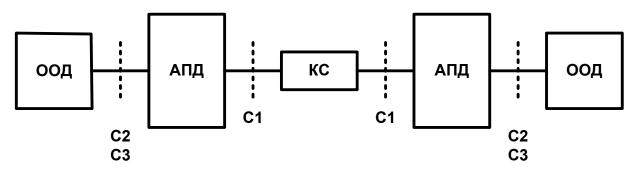


Рис 5.1

ЗВЕНО ДАННЫХ

С1-ТГ – телеграфный канал С1-ТФ – коммутир. телеф. канал С1-ТЧ – некоммутир. канал ТЧ С1-ФЛ – физические линии С1-ОЛ – оптические линии (ГОСТ, Рек. МСЭ, стандарты МОС)

Стандарты по стыкам С1

Таблица 5.1

Стык С1	ГОСТ	Рекомендация МККТТ, Стандарт МОС
С1-ТГ	22937-78	-
С1-ТФ	25007-81, 23504-79	V.2, V.21, V.23, V.27тэр,
	26557-85	V.50,V.53
С1-ТЧ	25007-81, 23475-79	V.2, V.22, V.26, V.27бис,
	23504-79, 26557-85	V.50,V.53
С1-ТЧР	23578-79	-
С1-ПГ	25007-81	V.35
С1-ШП	24174-80, 25007-81	V.36, V.37, MC 8482
	26557-85	
С1-ФЛ	24174-80, 26532-85	G.703
С1-АК	-	V.15
С1-ОЛ	-	V.31бис, рабочие документы
		MOC / ТК 97 / ПК 13

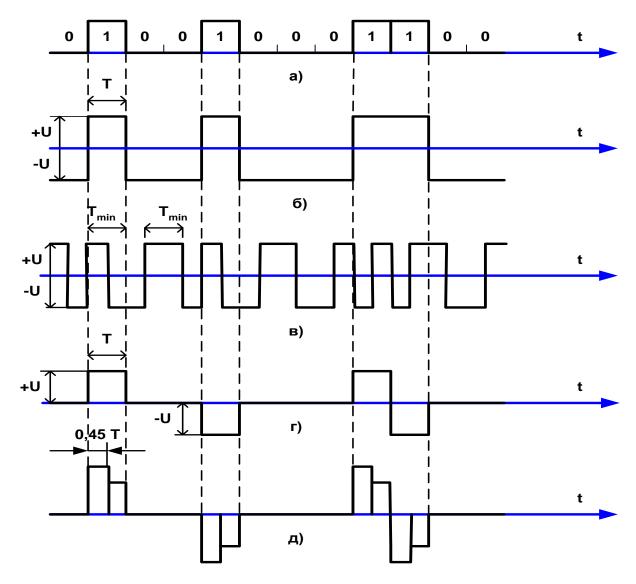


Рис.5.2.Виды сигналов стыков С1-ФЛ: а-информационный сигнал; б-сигнал низкого уровня; в-биимпульсный сигнал; г,д-квазитроичный сигнал; U-амплитуда сигнала; Т-длительность импульса; t-время.

Таблица 5.2

1,км	2	4	8
Коэффицент ошибок	8*10 ⁻¹⁰	1,6*10 ⁻⁹	3,2*10-9

Таблица 5.3 Отношение сигнал/шум в зависимости от коэффициента ошибок

p	R_p , $\partial \mathcal{B}$	p	R_p , $\partial \mathcal{B}$	p	R_p , ∂E
10 ⁻³	16,1	10 ⁻⁷	20,5	10 ⁻¹¹	22,6
10 ⁻⁴	17,7	10 ⁻⁸	21,1	10 ⁻¹²	23,0
10 ⁻⁵	18,8	10 ⁻⁹	21,7	10 ⁻¹³	23,4
10 ⁻⁶	19,9	10 ⁻¹⁰	22,2	10 ⁻¹⁴	23,7

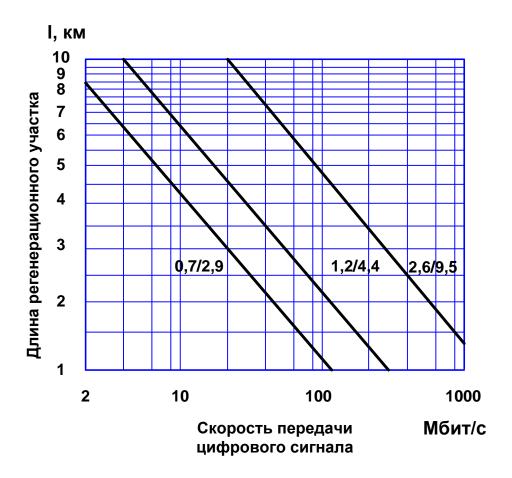


Рис 5.3 Зависимость длины регенерационного участка от скорости передачи цифрового сигнала по коаксиальным парам различных типов при допустимом коэффициенте ошибок на регенерационный участок 10⁻⁹ и километрическом затухании коаксиальных пар на частоте 1 МГц:

2,6/9,5 мм — α =0,27 Нп/км=2,34 дБ/км; 1,2/4,4 мм — α =0,61 Нп/км=5,29 дБ/км; 0,7/2,9 мм — α =1,02 Нп/км=8,86 дБ/км;

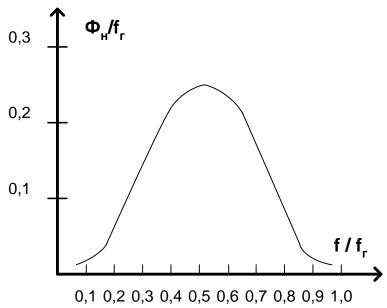


Рис. 5.4 Интенсивность непрерывной части спектра для квазитроичного кода с ЧПИ

2.ИНТЕРФЕЙСЫ ООД/АПД

V-интерфейсы (стык С2)

- функциональное сопряжение, V.24, RS-232;
- электрическое сопряжение, V.28, RS-232;
- механическое сопряжение, 25-контактный разъем ISO 2110, 9-контактный разъем

V.24 – цепи 100-серии (RS-232):

- заземление, общ. обратный провод (А);
- цепи сигналов данных (В);
- управляющие (функциональные) цепи (С);
- цепи синхронизации (D);
- цепи обратного канала (S).

Цепи установления соединения

Рек. МСЭ – V.25/V.28 Стандарт EIA – RS-366

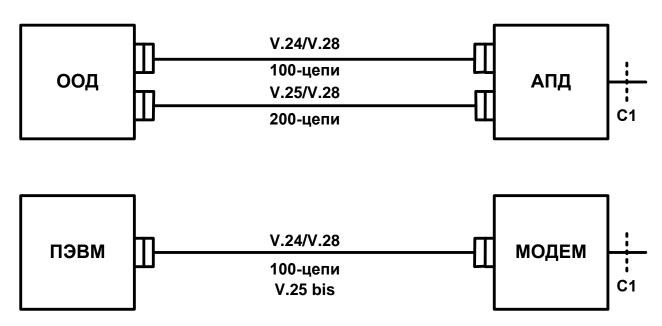


Рис 5.5

Сигналы:

- в цепях данных: «1» <-3В;«0» >+3В;
- в цепях управления и синхронизации: «вкл» >+3; «выкл» <-3.

Скорость передачи данных – до 20 кбит/с; дальность – до 15 м

Другие V-интерфейсы:

V.35: ± 0,55 В; R ≤ 64 кбит/с; синхрон. передача данных;

 $V.36: \pm 0.3$ В; R ≤ 72 кбит/с; симметр. и несимметр. цепи;

V.37: ± 0,3 В; R ≥ 72 кбит/с; симметр. и несимметр. цепи;

RS-449, RS-442A - симметр.(до max 10 Мбит/с на 10м; до 100кбит/с на 1000м);

RS-423A - несимметр.(до max 100 кбит/с на10м; до 1 кбит/с на 1000м).

Стандарт RS-449 содержит информацию о параметрах сигналов, типах разъемов, расположении контактов и т.п. Стандарту RS-449 соответствует Рек. МСЭ-Т *V.36*.

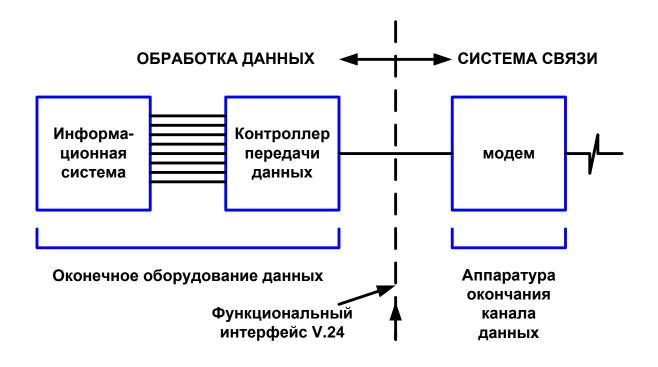


Рис 5.6. Функциональный интерфейс по Рекомендации V.24.

Нумерация цепей стыка по Рекомендации V. 24.

Таблица 5.4

				таолица 3.4
Номер	Наименование	ОТ	К	Категория
цепи	C			_
102	Сигнальное заземление			
103	Передаваемые данные	ООД	АПД	Д
104	Принимаемые данные	АПД	ООД	Д
105	Запрос передачи	ООД	АПД	У
106	Готов к передаче	АПД	ООД	У
109	Обнаружение принимаемого линейного сигнала данных	АПД	ООД	У
108.1	Подключить АПД к линии	ООД	АПД	У
108.2	ООД готово	ООД	АПД	У
107	АПД готово	АПД	ООД	У
113	Синхронизация элементов	ООД		С
114	передаваемого сигнала	АПП		C
114	Синхронизация элементов передаваемого сигнала	АПД		C
115	Синхронизация элементов принимаемого сигнала	АПД		С
	Обратный канал			
118	Передаваемые данные	ООД	АПД	Д
119	Принимаемые данные	АПД	ООД	Д
120	Запрос передачи	ООД	АКД	У
121	Готов к передаче	АПД	ООД	У
122	Обнаружение принимаемого линейного сигнала			
140	Тест удаленного шлейфа	ООД	АПД	У
141	Местный шлейф	ООД	АПД	У

Рис 5.7. 25 – контактный разъем по стандарту ISO 2110

Таблица 5.5

Номер контакта DB-25/DB-9	Номер цепи	Назначение	Номер контакта	Номер цепи	Назначение
2/3	103,TxD	Передав. данные	12	122,SCTS	Обнар-е несущей ДК
3/2	104,RxD	Приним. данные	13	121,SCTS	Готов к передаче по ДК
4/7	105,RTS	Запрет передачи	14	118,STD	Передав. данные ДК
5/8	106,CTS	Готов к передаче	15	114,TC	Синхр.передачи (от АКД)
6/6	107,DSR	АПД готово	16	119,SRD	Приним. данные ДК
7/5	108,DTR	Сигн. заземлен.	17	115,RC	Синхр. приема (от АКД)
8/1	109DCD	Обнар-е несущей	19	120,SRTS	Запрет передачи
9		+12 B	20/4	108,DTR	ООД готово
10		- 12 B	22/9	125,RI	Индикатор вызова
11	126	Выбор частоты передачи	24	113	Синхр. передачи (от ООД)

5.3.Х-интерфейсы.

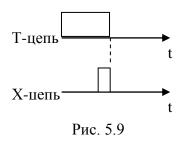
Х-интерфейсы используются в сетях передачи данных.

Сопряжение между ООД и АКД может осуществляться через X-интерфейсы

Рис. 5.8

В результате появился ряд протоколов для Х-интерфейсов.

Если X-интерфейс реализует цепи стыка, то применяется протокол X.24. Если это интерфейс между ООД и АКД, то применяются протоколы:


- X.20; X.20bis
- X.21; X.21bis
- X.22;

Деление цепей в Х-интерфейсах происходит по следующему признаку:

- 1. Общие провода
- 2. Цепи передачи/приема данных
- 3. Управляющие цепи
- 4. Цепи синхронизации

Раскроем их подробнее:

- 1. Общие провода. Существует 3 вида общих проводов: G (аналог 102 цепи), G_a (общий провод для ООД), G_b (общий провод от АКД).
- 2. Цепи передачи/приема данных:
 - а). Т передача от терминала к модему
 - б). R прием от модема к терминалу
- 3. Управляющие цепи:
 - а). С управляющая цепь от ООД
 - б). І управляющая цепь от АКД (модема)
- 4. Цепи синхронизации:
 - а). S тактовая синхронизация (по элементам) Cинхронизация по направл. Cинхронизация по байтам Cинхронизация по байтам
 - в). F цикловая синхронизация
 - г). Х тактовая синхронизация (сигналы от ООД, сопровождающие сигналы в цепи Т)

Механические характеристики и обозначения контактов разъема X.21 определены стандартом ISO 4903 (15-ти контактным интерфейсный разъем (ООД/АПД)). Электрические характеристики X.27 предусматривают использование каждой симметричной цепью двух проводов (контактов), обозначенных в таблице 5.6 через A и B.

Таблица 5.6.

Контакт		гакты .27	Цепь	Назначение	Направ	вление к
X.26	A	В	обмена		АПД	ООД
1		1		Для подключения экрана кабеля		
2	2	9	T	Передача	X	
3	3	10	C	Управление	X	
4	4	11	R	Прием		X
5	5	12	I	Индикация		X
6	6	13	S	Синхронизация		X
7	7	14	В	Байт- синхронизация		X
8		8	G	Общий возврат	X	
9,10			G_{a}	Общий возврат ООД		
15	1	5		Резерв		

В сетях все терминалы серии ${\bf X}$ классифицируются в соответствии с рекомендацией ${\bf X}.1.$

Показатели классов:

- 1. Режим обмена: а). асинхронный (по старт/стопному признаку)
 - б). синхронная работа
- 2. Вид коммутации: а). с коммутацией каналов
 - б). с коммутацией пакетов
- 3. Способ общения: а). дуплексный
 - б). полудуплексный
- 4. Скорость передачи данных.

Протоколы Х-интерфейсов:

- 1. Стандарт X.20 рассчитан на сопряжение старт/стопных терминалов серии X со старт/стоповыми модемами, работающих через специальную сеть данных. Стандарт X.20 рассчитан на 2 класса терминалов 1и 2. Первый класс это терминал рассчитанный на скорость передачи данных до 300 бит/с в коде МТК-5, асинхронно (по старт/стопному признаку). Второй класс это терминал рассчитанный на скорость передачи данных 200 бит/с, асинхронно
- 2. Стандарт X.21 рассчитан на сопряжение синхронных терминалов серии X с модемами, работающими через специализированные сети данных и тогда, исходя из этого X.20 и X.21 имеют одинаковые контактные системы (49.03). Стандарт X.21 работает с терминалами третьего класса и выше. Это классы с коммутацией каналов.

Третий класс – терминал со скоростью передачи данных 600 бит/с. Четвертый класс - терминал со скоростью передачи данных 2400 бит/с.

Пятый класс - терминал со скоростью передачи данных 4800 бит/с. Шестой класс - терминал со скоростью передачи данных 9600 бит/с. Седьмой класс - терминал со скоростью передачи данных 48 кбит/с. Отдельно стоит класс №30 − ISDN В-канал со скоростью передачи данных 64 кбит/с.

Классы с коммутацией пакетов.

Восьмой класс - терминал со скоростью передачи данных 2400 бит/с. Девятый класс - терминал со скоростью передачи данных 4800 бит/с. Десятый класс - терминал со скоростью передачи данных 9600 бит/с. Одиннадцатый класс - терминал со скоростью передачи данных 48 кбит/с.

Для стыка X.21 все они работают в асинхронном режиме (дуплексный модем). Так же X.21 рассчитан на использование как коммутируемых так и некоммутируемых (выделенных) каналов.

- 3. Стандарт X.20bis рассчитан на сопряжение старт/стопных терминалов серии X с асинхронными модемами серии V (работающими через телефонную сеть)
- 4. **Стандарт X.21bis** рассчитан на сопряжение старт/стопных терминалов серии X с синхронными модемами серии V. Рекомендация X.21bis является временной альтернативой X.21 и предполагает использование в сетях передачи данных общественного пользования.

5. **Стандарт X.22** — мультиплексный интерфейс, т.е. сопряжение мультиплексоров передачи данных с модемом. Т.е. на выходе мультиплексора будет сигнал, который по стыку х.22 будет сопряжен с аппаратурой.

Для сети X.25 первый уровень представляет физический интерфейс между ЭВМ и каналом связи, который соединяет ЭВМ с сетью. Если канал цифровой, физический интерфейс определяется рекомендацией X.21. Если же канал является аналоговым (с использованием модемов), физический интерфейс определяется рекомендацией X.21bis.

Установление связи через сеть с коммутацией каналов осуществляется с помощью процедур управления соединением X.21. Эти процедуры используют интерфейсные сигналы X.21 (цепи обмена E, R, C и I) и набор символов Международного алфавита №5 (IA5). Каждый символ содержит восемь битов: семь битов в коде IA5 и бит контроля по нечетности.

Полное описание процедуры соединения является достаточно сложным, так как в ней используются тайм-ауты. Упрощенная последовательность процедуры вызова, в которой тайм-ауты игнорируются, показана на рис. 5.10.

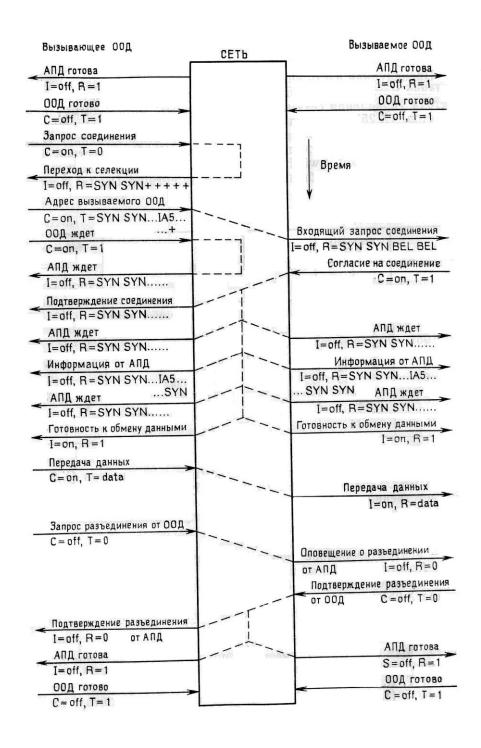


Рис. 5.10. Последовательность установки адресуемого соединения в соответствии с рекомендациями X.21.

Процедура адресуемого соединения Х.21

Описание процедуры соответствует упрощенной последовательности, показанной на рис. 5.10:

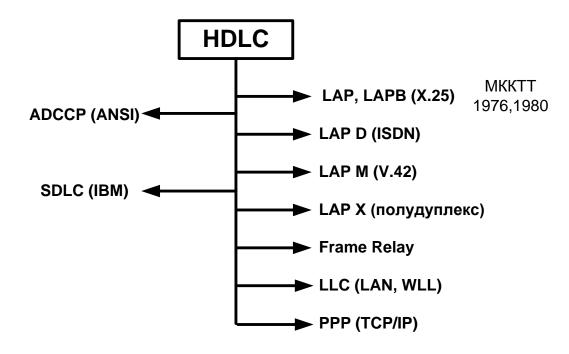
- Вызывающее ООД дает запрос на установление связи с сетью, посылая сигнал «запрос соединения» (Т в состоянии «0», С в состоянии «включено»).
- Сеть отвечает вызывающему ООД сигналом «переход к селекции», непрерывно передавая по R коды знака «+» (IA5), которым предшествует два или более знаков SYN (IA5), при цепи I в состоянии «выключено».
- Вызывающее ООД передает по цепи Т при С в состоянии «включено» последовательность знаков, означающую выбранный адрес. Эта последовательность состоит из двух или более знаков SYN, за которыми следует адрес (в соответствии с рекомендацией X.121) в коде IA5, ограниченный одним знаком «+». Между отдельными знаками адреса допускается использование заполнителей SYN.
- Сеть передает в вызываемое ООД сигнал «входящий запрос соединения», передавая по R непрерывную последовательность знаков BEL, которой предшествует два знака SYN, при I в состоянии «выключено».
- Вызываемое ООД отвечает сети сигналом «подтверждение соединения», непрерывно передавая по Т значение «1» при С в состоянии «включено».
- Вызывающее ООД принимает по R при I в состоянии «выключено» последовательность знаков в коде IA5 (сигналы обработки соединения), которая означает, что соединение установлено, либо причину, по которой соединение не может быть установлено. Если соединение установлено, сеть (АПД) посылает вызывающему/вызываемому ООД сообщение о выделении канала и, если необходимо, об условиях оплаты.
- Как только связь для передачи данных через сеть установлена, вызывающему/вызываемому ООД посылается сигнал «готовности данных» (непрерывные «1» по цепи R при I в состоянии «включено»).
- Осуществляется передача данных в одном или обоих направлениях.
- Вызывающее ООД инициирует прекращение связи сигналом «запрос разъединения» (непрерывные «0» по цепи Т при С в состоянии «выключено»).

Основное отличие X.21 от X.21bis состоит в том, что в X.21 используются цепи нового стыка X.24, а в X.21bis – цепи V.24. Кроме того, в X.21 сигналы управления кодируются знаками стандартного семиэлементного первичного кода V.3, а в X.21bis для каждого сигнала имеется отдельная цепь. Таким

образом, сети с X.21 предоставляют пользователю все услуги новых изохронных цифровых сетей с коммутацией цепей данных а сети с X.21 bis — только часть этих услуг.

Используемая литература:

- 1. Мячев А.А., Степанов В. И., Щербов В. А., «Интерфейсы систем обработки данных»; Москва «Радио и связь», 1989 г.
- 2. Ф. Дженнингс «Практическая передача данных. Модемы, сети и протоколы»; Москва «Мир», 1989 г.


6. Канальный уровень ЭМВОС

Функции КУ:

- Формирование кадра;
- Контроль ошибок и повышение достоверности;
- Обеспечение кодонезависимой передачи;
- Восстановление исходной последовательности блоков на приемной стороне;
- Управление потоком данных на уровне звена;
- Устранение последствий потерь или дублирования кадров.

Протоколы канального уровня:

- Байт-ориентированные (BSC);
- Бит-ориентированные (HDLC -ISO(MOC)).

6.1. Байт-ориентированные протоколы.

1) МТК – 5 (IA5); 2) ASCII ЕСМА – Европ. ассоциация фирм-произв. ЭВМ

10 служ. (упр.) комбинаций:

10 ciry ma (ympi) momonium												
		IA5	<u> </u>	<u> 1</u>	NS]	e)]	КВ	и	з. П	рот.)		
			ŀ) 7	$\mathbf{b_6}$	b_5	b ₄	$\overline{\mathbf{b_3}}$	$\mathbf{b_2}$	$\mathbf{b_1}$	Π'	Э
1. Начало заголовка (НЗ) –	SOH	01	()	0	0	0	0	0	1		
2. Начало текста (НТ) -	STX	02	()	0	0	0	0	1	0	1	
3. Конец блока (КБ) -	ETB	17	()	0	1	0	1	1	1	0	
4. Конец текста (КТ) -	ETX	03										
5. Конец передачи (КП) -	EOT	04										
6. Кто там? (КТМ) -	ENQ	05										
7. Подтверждение (ДА) -	ACK	06										
8. Отрицание (НЕТ) -	NAK	15										
9. Авторегистр (АР) -	DLE	7F										
10. Синхронизация (СИН) -	SYN	16										
DLE EOT – разъединить			соединени	ıe.								

Формат первого и промежуточного блоков

Процедура обмена: полудуплекс; РОС-ОЖ.

Помехоустойчивое кодирование (ВСС): матричное кодирование.

Передача: - синхронная, побайтно (n=8)

- асинхронная (без SYN) старт-стопная.

Структура заголовка

Протокол BSC ("Процедуры двоичной синхронной связи")

Фирма IBM

- 1) MTK-5 (ASCII)
- 2) 8-битный код фирмы IBM (EBCDIC)

EBCDIC – расширенный двоично-десятичный код для обмена сообщениями

	Солужебная комбинация		B ₈	B ₇	B ₆	B ₅	B ₄	B ₃	\mathbf{B}_2	\mathbf{B}_1
1	H3 (SOH)	$(01)_{h}$	0	0	0	0	0	0	0	1
2	HT (STX)	$(02)_{h}$	0	0	0	0	0	0	1	0
3	КБ (ЕТВ)	$(26)_{h}$	0	0	1	0	0	1	1	0
4	KT (ETX)	$(03)_{h}$	0	0	0	0	0	0	1	1
5	КП (ЕОТ)	$(37)_{h}$	0	0	1	1	0	1	1	1
6	KTM (ENQ)	$(2D)_h$	0	0	1	0	1	1	0	1
7	HET (NAK)	$(3D)_h$	0	0	1	1	1	1	0	1
8	AP1 (DLE1)	$(10)_{h}$	0	0	0	1	0	0	0	0
9	СИН (SYN)	$(32)_{h}$	0	0	1	1	0	0	1	0

Процедура передачи: синхронно, побайтно;

РОС-ОЖ.

<u>Помехоустойчивое</u> МТК-5 → ВСС (КПБ)

кодирование: 8-битный код \rightarrow CRC (ЦПП)

 $P(x) = x^{16} + x^{15} + x^2 + 1$

Преимущества: 1) борьба с потерями блоков и вставками лишних блоков,

2) прозрачный режим.

Положительные - ACK 0 (DLE 0) – для четных

<u>квитанции:</u> $(10)_h (F0)_h$

- ACK 1 (DLE 1) – для нечетных.

 $(10)_h (F1)_h$

- 1) (DLE ;) "подожди с передачей" (5E)
- 2) (DLE <) обратное прерывание
- 3) (STX ENQ) задержка текста

6.2.Бит - ориентированные протоколы.

HDLC – MOC (ISO) 3309;

ADCCP - ANSI;

SDLC - фирма IBM (вместо BSC)

Процедура обмена: дуплекс, синхронная, РОС.

Формат кадра HDLC:

Помехоустойчивый код: циклический, V.41 $P(x)=x^{16}+x^{12}+x^5+1$.

"Прозрачная" передача – бит-стаффинг.

Адрес: получателя.

<u>Поле управления:</u> (1 байт)	1	2	3	4	5	6	7	8	
Информационный кадр	0		N (S)	P/F		N(R)		ı
Супервизорный кадр	1	0		S L	P/F		N(R)		s
Ненумерованный кадр	1	1	ľ	VI	P/F		M		U

S – биты (3,4)

- 00 ГП (готов к приему) (RR);
- 01 НП (неприем) (REJ) \rightarrow запрос, начиная с N(R);
- 10 НГП (неготовность приемника) (RNR);
- 11 ВНП (выборочный неприем) (SREJ).

S-кадр	Флаг	Адрес	ПУ	CRC	Флаг
	1 байт	1 байт	1 байт	2 байта	1 байт

U-кадр	Флаг	Адре	ес П	ПУ Данные		CRC	Флаг		
·	1 байт	1 бай	т 1 ба	айт	3 байта (CMDR)			2 байта	1 байт
<u>М – биты→</u> ↓Команды	3	4	6	7	7	8			
SARM	1	1	0	()	0		ь связь в асинхр сированном рех	
DISC	0	0	0	1	1	0	Пре	екратить связь	
UA	0	0	1	1	1	0	Ненумеров	занное подтверж	кдение
CMDR	1	0	0	()	1	Отказ от в	выполнения ком	ианды

Команды: $2^5 = 32$

LAP В кадры могут быть как команды или ответы.

Команды от АКД к ООД и ответы на них имеют адреса: 1100 0000 Команды от ООД к АКД и ответы на них имеют адреса: 1000 0000

Кадры с другими адресами стираются.

 $\underline{\Pi Y}$: N(R) и N(S) — в поле I — кадра, дуплексная передача.

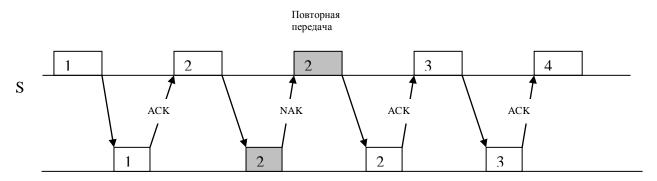
1 байт 3 бита 3 бита (mod 8)

2 байта (3+4) (3+4) (mod 128) либо N(R) в S-кадре.

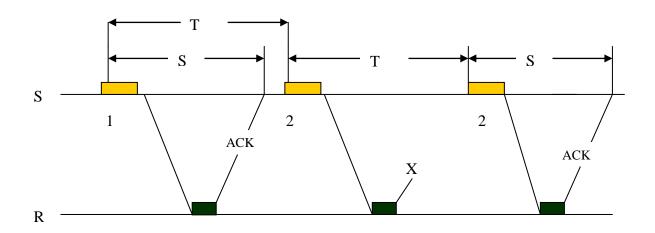
<u>Символы Р/F:</u> Р-бит запроса в командах, F-бит окончания ответа.

Режим обмена:	<u>М-биты</u>	<u>U-кадра</u>
<u>ДПЛ:</u>	0÷7	0÷127
Режим асинхронных ответов	(SARM;	SARME)
(несинхронизированный)	11000	11010
2) <u>"запрос-ответ":</u>		
Режим нормальных ответов	(SNRM;	SNRME)
	11001	11011
3) Равенств полномочий:		
Асинхронный сбалансированный режим	(SABM;	SABME)
	11100	11110

Режим нормальных ответов (NRM):

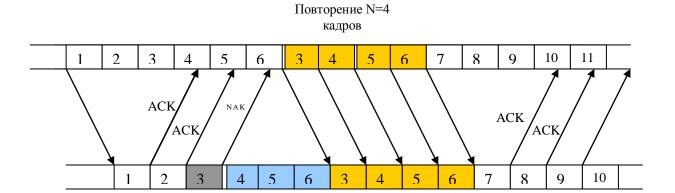

6.3. Протоколы повторной передачи кадров

Механизм автоматического запроса повторной передачи (ARQ -Automatic Repeat Quest)

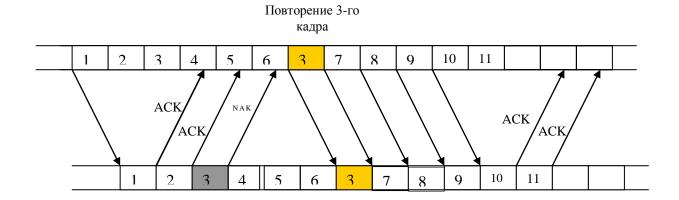

Характеристика протокола - корректность и эффективность.

- Целью протокола повторной передачи является реализация надежной доставки кадров по ненадежному каналу.
- Кадры, не принятые корректно, посылаются повторно. Отправитель информируется об ошибках передачи с помощью таймера и подтверждений.
- Протоколы повторной передачи корректны, если они позволяют получателю принять точно одну правильную копию каждого кадра.
- Эффективность протокола повторной передачи равна средней скорости успешной доставки кадров (Rэф) деленной на скорость передачи в канале.

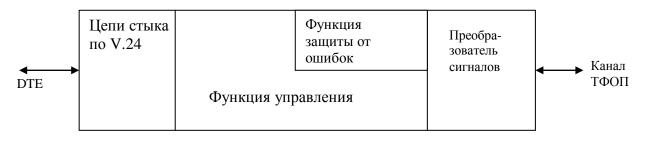
6.3.1. Протокол с остановкой и ожиданием (SWP - Stop-and-Wait Protocol). Данный протокол реализует алгоритм РОС-ОЖ..



R


Алгоритм работы протокола **SWP**

6.3.2. Протокол повторной передачи с возвращением на N кадров назад. (GBN - Go Back N)


6.3.3. Протокол повторной передачи с выборочным (селективным) повторением

(SRP -Selective Repeat Protocol)

6.4. Протокол V.42.

Стандарт V.42, принятый МСЭ-Т в 1988г., определяет процедуру LAPM (Link Access Procedure for Modems)

І- кадр:

Фла	ιΓ		Адрес	;	По	ле		Дан	ные (1	n (CRC	Фл	іаг	
					уп	равле	ения	бит)						
Пол	е упр	авле	ния І-	кадра	a:									
0								P/F						
				N	(S)]	N(R)	_
Пол	е упр	авле	ния S	-кадра	a:									
1	0	S	S	X	X	X	X	P/F						
												N(R)	
Пол	е упр	авле	ния С	^Ј -кадр	a:									
1	1	M	M	P/F	M	M	M							

6.5. Протоколы передачи файлов

6.5.1. Протокол Xmodem (длина блока данных 128 байт, контрольная сумма по модулю 256)

Передатчик	Направление	Приемник
• • • • • • • • • • • • • • • • • • • •	передачи	
	←	<nak></nak>
<soh>01FE<данные><cs></cs></soh>	\rightarrow	
	←	<ack></ack>
<soh>02FD<данные><cs></cs></soh>	\rightarrow	(обнаружены ошибки)
	←	<nak></nak>
<soh>02FD<данные><cs></cs></soh>	\rightarrow	
	←	<ack></ack>
<soh>03FC<данные><cs></cs></soh>	\rightarrow	
(знак < ACK> искажен)	←	<ack></ack>
<soh>03FC<данные><cs></cs></soh>	\rightarrow	
	←	<ack></ack>
< EOT >	\rightarrow	
	←	<любой знак, кроме
		<ack></ack>
<eot></eot>	\rightarrow	
	←	<ack></ack>
Пере	дача файла заверш	ена

Время таймаута = 10с.

Недостатки: низкая производительность (РОС-ОЖ или SWP) и большая вероятность необнаруженной ошибки.

- **6.5.2. Протокол Хтоdem-CRC.** Используется **CRC-16**, обнаруживающий все одиночные, двойные и все ошибки нечетной кратности. Вначале вместо знака <NAK> передаются знаки c (63)h. Не получив ответа на три переданных знака c, приемник переходит на протокол **Xmodem** и передает знаки <NAK>.
- **6.5.3. Протокол Xmodem-1k.** Это модернизация протокола **Xmodem-CRC** .Длина блока данных 1024 байт. Кадр в этом случае начинается знаком <STX>, комбинация (02)h, а не знаком <SOH>.Возможна работа и с кадрами длиной в 128 байт с заголовком <SOH>.Передатчик может изменить длину блока данных только после приема квитанции **<ACK>** для текущего кадра. Номер блока увеличивается на единицу независимо от длины блока.
- **6.5.4 Протокол Ymodem** представляет собой протокол **Xmodem-CRC**, в котором реализована групповая передача кадров. Протокол **Ymodem** может:
 - применять **CRC-16** при приеме знаков "с", в противном случае использует 8-битную контрольную сумму;
 - работать с блоками длиной 128 так и 1024 байта;
 - обеспечивать переключение длин блоков.
- **6.5.5. Протокол Ymodem-g.** Применяется **CRC-16,** обеспечивает передачу данных с высокими скоростями и малой вероятностью ошибки. Реализуется алгоритм РОС-НП, передатчик передает блоки подряд на высокой скорости, не ожидая подтверждения после каждого блока. Подтверждающий знак **<ACK>** будет передан только в конце передачи всего файла. Приемник инициирует такую групповую передачу путем посылки знаков g вместо "c". Такой протокол позволяет достичь скорости передачи, близкой к максимально возможной в данном канале.

При обнаружении ошибок приемник прекращает передачу кадров, посылая последовательность специальных знаков CAN кода ASCII.

6.5.6. Протокол Zmodem. Обеспечивает повышенную достоверность благодаря применению **CRC-32**, что уменьшает вероятность необнаруженной ошибки не менее, чем на пять порядков [О.И.Лагутенко, стр. 191]

6.6. Протоколы сжатия данных.

6.6.1. Протокол V.42bis.

Этот протокол обеспечивает коэффициент сжатия 4:1, протокол V.42bis основан на алгоритме Лемпела-Зива-Уэлча (LZW-алгоритм).

Работа кодера LZW на примере трёхсимвольного алгоритма (а,б,в).

(а- код 1,б-код 2,в- код 3)

Символ	wK	W	Выход	Строка, добавляемая в словарь
a	a	а	-	
б	аб	б	код "a"=1	аб - код4
a	ба	а	код "б"=2	ба – код5
б	аб	аб	_	
В	абв	В	код "аб"=4	абв - кодб
б	вб	б	код "в"=3	вб - код7
а	ба	ба	_	
б	баб	б	код "ба"=5	баб - код8
a	ба	ба	_	
б	баб	баб	_	
a	баба	а	код "баб"=8	баба – код9
a	aa	а	код "a"=1	аа - код10
a	aa	aa	_	
a	aaa	а	код "аа"=10	ааа - код11
a	aa	aa	_	
a	aaa	aaa	_	·
a	aaaa	а	код	аааа - код12
			"aaa"=11	

6.6.2. Протокол V.44.

Коэффициент сжатия 6:1. Эффективен при работе с гипертекстом. В основе протокола лежит модификация алгоритма Лемпела-Зива LZJH

6.7. Радиомодемы.

Классификация:

- низкоскоростные для каналов ТЧ:
 - о радиомодемы для связи "точка-точка";
 - о пакетные радиомодемы
- высокоскоростные радиомодемы ISM-диапазонов.

6.7.1. Пакетные радиомодемы.

Рекомендация АХ.25

Скорость передачи данных обычно не превышает 9600 бит/с.

Протокол обмена предусматривает множественный доступ к радиоканалу.

Формат кадров соответствуют протоколу канального уровня HDLC.

Формат кадров АХ.25

Информационный кадр (тип I)

ФЛАГ	АДР,	ПОЛЕ	ДАННЫЕ	CRC-16	ФЛАГ
	ПОЛЕ	УПР.			
01111110	1470	1 байт	до 256	2 байта	01111110
	байт		байт		

Служебный (управляющий) кадр (S-кадры и U-кадры)

ФЛАГ	АДР,	ПОЛЕ CRC-16		ФЛАГ	
	ПОЛЕ	УПР.			
01111110	1470	1 байт	2 байта	01111110	
	байт				

Формат адресного поля:

ель		Отправите.	ль.	Ретранслятор		
Адрес (6 байт)	ИП	Адрес (6 байт)	ИП	Адрес (6	ИС	
				байт)		

Идентификатор (ИП, ИС), 1 байт:

1	2	3	4	5	6	7	8

Первый бит: "1" - признак последнего байта адресного поля;

Биты со 2-го по 5-ый содержат вторичный идентификатор пользователя (станции), это число от 0 до 15, которое определяет уровень сервиса; обычный

пользователь имеет 1.

6-ой и 7-ой биты - резерв (нет определенного назначения);

8-ой бит: для отправителя и получателя всегда устанавливается в нуль; для ретрансляторов - в"1" - если ретранслятор уже пройден и в "0" - если ретранслятор еще не пройден.

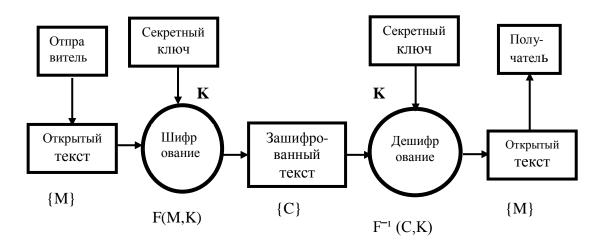
6.7.2. Радиомодемы ISM - диапазона.

Эти радиомодемы работают в диапазонах, выделенных для промышленного, научного и медицинского оборудования (ISM - Industrial, Scientific and Medical): 902-928 МГц;

2,4 - 2,4835 ГГц и 5,725 - 5,85 ГГц

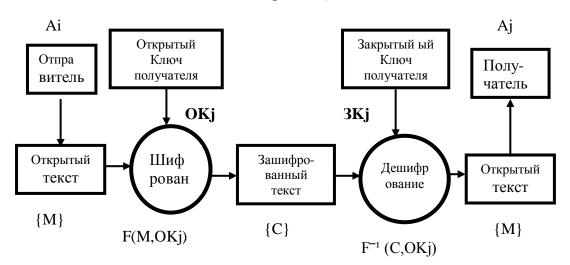
Тема 7. Вопросы информационной безопасности.

РУКОВОДЯЩИЕ ДОКУМЕНТЫ ГОСТЕХКОМИССИИ РОССИИ ПО ЗАЩИТЕ ИНФОРМАЦИИ ОТ НСД

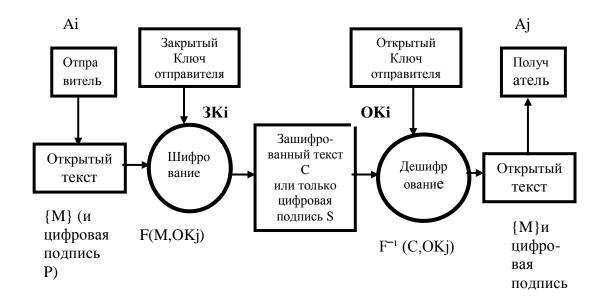

- Защита от несанкционированного доступа к информации (термины и определения)
- Концепция защиты СВТ и АС от НСД к информации
- ◆ Автоматизированные системы. Защита от несанкционированного доступа к информации (классификация автоматизированных систем и требования по защите информации)
- Средства вычислительной техники. Защита от несанкционированного доступа к информации. Показатели защищенности от НСД к информации
- Временное положение по организации разработки, изготовления и эксплуатации программных и технических средств защиты информации от НСД в автоматизированных системах и средствах вычислительной техники

РУКОВОДЯЩИЕ ДОКУМЕНТЫ ФЕДЕРАЛЬНОГО АГЕНСТВА ПРАВИТЕЛЬСТВЕННОЙ СВЯЗИ И ИНФОРМАЦИИ (ФАПСИ) ПО ЗАЩИТЕ ИНФОРМАЦИИ

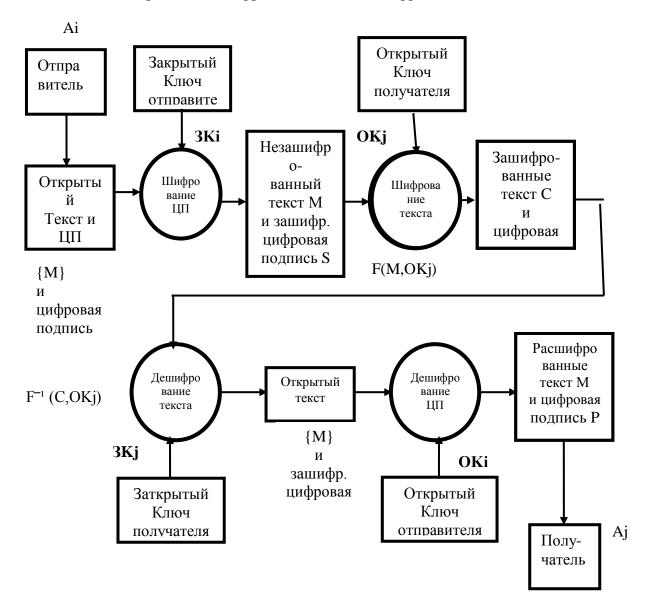
- ◆ Требования к заявителю на право установки (инсталляции), эксплуатации серпифицированных ФАПСИ шифровальных средств и предоставления услуг по шифрованию информации при защите информации по уровню "С". Утверждены руководством ФАПСИ 05.01.97г.
- Порядок лицензирования установки (инсталляции), эксплуатации сергификационных ФАПСИ шифровальных средств и предоставления услуг по шифрованию информации, не содержащей сведений, составляющих государственную тайну, в корпоративных сетях типа "банк-клиент", системах финансового и фондового рынка, предприятий, организаций и учреждений Российской Федерации при защите информации по уровню "С". Утверждены руководством ФАПСИ 31.12.96г.
- ◆ Представляемый заявителем перечень сведений, обосновывающих наличее на предприятии условий для установки (инсталляции), эксплуатации сертифицированных ФАПСИ шифровальных средств и предоставления услут по шифрованию информации при защите информации по уровню "С".
 Утвержден руководством ФАПСИ 06.12.96г.


Методы шифрования.

1) Симметричные ключи (системы с общим секретным ключом).


Пример: стандарт DES (Data Encryption Standard)

2) Ассиметричные ключи (использование пары ключей - открытого и закрытого)



Пример: технология RAS (Rivest, Shamir, Aldeman)

Цифровая подпись

Одновременное шифрование текста и цифровая подпись.

